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I sketch a self-contained framework for quantum mechanics based on its 
path-integral or "sum-over-histories" formulation. The framework is very close 
to that for classical stochastic processes like Brownian motion, and its interpre- 
tation requires neither "measurement" nor "state-vector" as a basic notion. The 
rules for forming probabilities are nonclassical in two ways: they use complex 
amplitudes, and they (apparently unavoidably) require one to truncate the 
histories at a "collapse time," which can be chosen arbitrarily far into the 
future. Adapting this framework to gravity yields a formulation of quantum 
gravity with a fully "spacetime" character, thereby overcoming the "frozen 
nature" of the canonical formalism. Within the proposed adaptation, the value 
of the "collapse time" is identified with total "elapsed" spacetime four-volume. 
Interestingly, this turns the cosmological constant into an essentially classical 
constant of integration, removing the need for microscopic "fine tuning" to 
obtain an experimentally viable value for it. Some implications of the "V = T" 
rule for quantum cosmology are also discussed. 

I t  has  o f t en  been  r e m a r k e d  tha t  w i t h o u t  the  o n e - d i m e n s i o n a l  " i nva r i -  
ance  g r o u p "  o f  t ime  t r ans l a t i ons ,  science as we k n o w  it w o u l d  be imposs i -  

ble because  the  o u t c o m e  o f  a n  e x p e r i m e n t  w o u l d  d e p e n d  o n  w h e n  it  
h a p p e n e d  to be pe r fo rmed .  In  this sense the  gauge  concep t  c an  be t raced  
back  to the  earl iest  t imes,  a n d  the h i s to ry  o f  gauge  theor ies  is the  h i s tory  
o f  science itself. Af t e r  b e i n g  b o r n  in  this w a y - - a n d  o f  course  af ter  a lapse  

o f  m a n y  y e a r s - - t h e  s imple  i n v a r i a n c e  g r o u p  o f  t ime  t r a n s l a t i o n s  rel in-  

This paper is the text of a talk delivered at the conference, "The History of Modern Gauge 
Theories," held at Logan, Utah, in July 1987. As it now appears likely that the conference 
proceedings will never see print, the talk is being published here instead. This paper is 
dedicated to the memory of Arnold Rosenblum, who, with the help of Max Dresden, 
organized the conference. 
Department of Physics, Syracuse University, Syracuse, New York 13244-1130. 

523 
0020-7748/94/0300-0523507.00/0 �9 1994 Plenum Publishing Corporation 



524 Sorkin 

quished its independent identity by entering into the Galilean group, where 
it could no longer be uniquely separated from the spatial translations. Still 
later the synthesis with spatial symmetry became more complete when the 
Poincar6 group replaced the Galilean one. And finally, in the diffeomor- 
phism group, the symmetry group of general relativity, all traces of a 
separate meaning for time have disappeared, with any smooth reshuffling 
of spacetime points being admissible. 

Now, classically this vast enlargement of the gauge group has been a 
wholly satisfactory development. In denying genuine individuality to the 
points of spacetime, general covariance is telling us that these points exist 
not for themselves, but only as carriers for the metric, and for the other, 
"matter" fields that interact with the metric. 

Incidentally, why are not all permutations of spacetime points in- 
cluded in the general covariance group; why do we limit ourselves to 
rearrangements which are continuous and smooth? The answer of course is 
that the underlying spacetime manifold M is not entirely formless. Its 
points carry not only the metric and "matter" fields, but first of all a 
topology and a differentiable structure. But these elements of structure, 
unlike the fields they support, remain (classically) "absolute" (=back- 
g round -  nondynamical). Hence, every symmetry must preserve them. 

For us, though, the important thing is that time has no place among 
these elements of absolute relativistic structure, pertaining rather to the 
particular metric gab with which M happens to be endowed. Conversely, M 
deprived of any specific metric possesses no notion of time and therefore no 
remnant of the distinction between spacelike and nonspacelike hypersur- 
faces. Thus, time is not one of the background structures of classical 
relativistic physics. 

In contrast, quantum dynamics has so far proved impossible to formu- 
late except with the aid of a background structure representing time. 
Indeed, I know of only three methods of formulating quantum theories, 
and in each of them this distinguished role of time can be seen dearly. In 
canonical formulations, the basic dynamical equation is the Schr6dinger 
equation, Hq~ = ih a@/~t, in which t appears glaringly. In what I believe are 
called "covariant" formulations (i.e., dynamics expressed as covariant field 
equations relating operators at different spacetime points) one invokes 
equal time commutation relations to supplement the equations of motion in 
generating the complete set of algebraic relations among the field opera- 
tors. Finally, there is the sum-over-histories formulation, to which I will 
return shortly. As it is most commonly interpreted, namely as a technique 
to produce transition amplitudes (q2t2lql t I ), it is not really an alternative 
framework, and anyway one still requires some background time with 
respect to which the labels tl and t2 can make sense (unless the dependence 
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on t were to drop out, which is precisely what happens in most forms of 
"canonical quantum gravity" for a reason I will discuss in a moment). 2 

So we encounter a contradiction between general convariance on one 
hand and the quantum need for some form of background time on the 
other hand. 

Let us see briefly how this contradiction manifests itself in the canon- 
ical formulations of quantum gravity. There we have a spacelike hypersur- 
face Jcf(t) advancing through M in the parameter-time t. The spacetime 
metric g is replaced by a path q( �9 ), where q(t) = g[~(t) is the restriction 
of g to aft(t). However, nothing physical is affected by a reparametrization 
t ~ t" = f ( t ) .  Since in particular the action is not changed, the generator of 
6t, that is to say the Hamiltonian, must vanish, leading to the Schrrdinger 
equation 

i ~ t  = H~b = O . ~b = O 

Thus the wavefunction ~k, which a priori  depended on q and t, turns out to 
be a function of q only: spacetime collapses to just space! 

In the resulting formalism the general covariance group is not realized, 
but only the group of diffeomorphisms of a single hypersurface. All the 
other diffeomorphisms get entangled with the dynamics, resulting addition- 
ally in the problems that the Hilbert space inner product is difficult or 
impossible to define, and the physical observables difficult or impossible to 
recognize. 

But, even apart from all these "technical" problems, the inability to 
refer directly to spacetime makes it hard to formulate questions with 
physical meaning. For example, a black hole horizon is by its very nature 

2At about this point in my talk some questions and objections were raised concerning the 
assertion that time plays a distinguished role in quantum dynamics. One person pointed out 
that the hypersurfaces to which the parameter t refers can be any spacelike ones, and 
therefore covariance does not seem to be lost. However, this remark referred to flat space, 
where the background Minkowski metric has already broken the diffeomorphism group 
down to the Poincar6 group. There, the remaining Lorentz covariance is indeed not lost, 
because none of its transformations turn a spacelike hypersurface into a nonspacelike one. 
More generally, not only flat-space theories, but even quantum field theory in curved 
spacetime is still OK, because the metric--if  globally hyperbolic--still allows the appropriate 
initial-value surfaces to be recognized. However, with the advent of general covariance it 
becomes impossible to any longer distinguish a priori spacelike hypersurfaces from ones 
which are timelike somewhere. Another participant remarked that "stochastic quantization" 
offers a fourth formulation of quantum dynamics. For my purposes, however, I think it can 
be viewed as a species of sum-over-histories formalism, or more exactly as a tool to compute 
the (Euclidean) path integral, whose physical interpretation remains unaffected. 



526 Sorkin 

defined only with respect to the global geometry, and a universe which 
expands, contracts, and then "bounces" into a reexpansion would seem 
impossible to describe in terms of only some time-independent wavefunc- 
tion ~O(q). Thus, questions about the behavior of an evaporating black hole 
or a collapsing universe become nearly impossible to ask, as do also, for 
example, questions about the probability of a strong gravitational field 
creating a pair of (topological) geons. 

More generally, the notion of a 4-dimensional spacetime seems recov- 
erable within a canonical formalism only in the semiclassical limit, which is 
the regime of least interest from the point of view of quantum gravity. 
(Incidentally, the conflict with diffeomorphism invariance is even worse for 
string theory, which, at least up until now, destroys even more of general 
covariance by introducing a background spacetime metric.) 

A formulation of quantum dynamics that seems at first sight to escape 
from the contradiction between time and general covariance is what I will 
call the sum-over-histories framework. To understand where this formula- 
tion comes from, let us consider first the description of Brownian motion 
as a (purely classical) stochastic process. Here the physical reality is a path 
(or "history") V = V(t), and the meaningful questions refer in general to 
properties of the path as a whole. However, the theory, though classical, is 
inherently nondeterministic and furnishes nontrivial answers only to ques- 
tions of the form: "With what probability P does the actual path lie in such 
and such a (measurable) subset C of the space of all possible paths?" 

A typical question of this kind is, "Will the particle return to the 
origin?," to which the answer is, "Yes with probability P(cI I ) , "  where 
c = {v Is(t) = 0 some t > 0}, and I have assumed the initial condition I that 
V(0) =0.  The dynamical information is thus contained in the rule for 
computing P, which formally is just 

e(clI) = E p(vlI) (1) 

where the P(V) are positive real numbers weighting the individual paths. 
Notice here that the question C refers to paths which are infinite into the 
future, and that P(C) is only very indirectly related to "transition probabil- 
ities" of the form p(x2t2 [x~ t~). Note especially that what is physically real 
is the actual path V, and not some probability density p(q, t) to find the 
particle at position q at time t. 

Now the quantum mechanical sum-over-histories framework is almost 
wholly taken over from that just sketched. The "only" difference is that the 
probabilities P(C[I) are computed according to a different rule from (1), a 
rule involving complex amplitudes rather than just positive probability 
weights. 



Sum-over-Histories Framework for Gravity 527 

To interpret the sum over histories as I have just done potentially 
helps quantum gravity in two ways. First, it appears to do without any 
notion of distinguished time; and second, it makes no direct reference to 
"measurements" as basic notions, thereby protecting us from uncertainty 
principle arguments that the metric cannot possibly be measurable at the 
relevant (Planck) scales. It also brings the philosophical improvement that 
there is no "state vector collapse," because there is no state vector to 

collapse, 7 itself being real rather than some wavefunction @(q, t). However, 
this last aspect has more to do with quantum theory in general than with 
its relation to gravity. 

Now what rule for obtaining P ( C I I  ) does quantum mechanics put in 
place of equation (1)? As a first approximation let us suppose the rule is as 
follows: Assign to each path 7 some complex amplitude A(y) and set 

P ( C )  = IA(C)]2 (2a) 

where 

A ( C )  = ~ A(J  (2b) 
yEC 

is the sum of the amplitudes of all the paths comprising C. Here P ( C )  is the 
relative probability of C and must be normalized by reference to the 
alternative subsets D, E, F , . . .  from which C is being distinguished. If this 
rule were true, then--except for the final squaring of A to get P - -quan -  
tum probabilities would be just like classical ones, only with complex 
weights replacing positive real ones. In particular, probabilities could be 
computed without ever introducing a distinguished time, because ampli- 
tudes would be functions of whole paths, or whole spacetimes in the case 
of gravity. 

Unfortunately this appealingly simple picture cannot--as far as I can 
see--be maintained, and therefore it must presumably be modified also for 
gravity. Specifically, it has two failings, the first of which is that the correct 
amplitudes A ( C )  seem not  to be always additive as (2b) would imply. The 
second problem is that the amplitudes A(7) cannot really be chosen freely 
if any semblance of locality and causality is to be maintained. Unfortu- 
nately I have no time to explain in detail what I mean by this second 
remark except to say that causality requires that the performance of future 
measurements or the introduction of external fields in the future should not 
affect the probabilities for earlier events. 

Let us, however, consider further the question of additivity in the case, 
say, of a single point particle moving in a potential V = V(x).  Assume the 
initial condition q = qo at t = to, and suppose that the finite set of positions 
q~ = q (h ) ,  q2 = q(tz) . . �9 q,  = q(tn) are to be measured at times q ,  t2, �9 �9 t , .  
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The set of  all paths y is thereby sorted into subsets characterized by the 
values q~, q2, �9 �9 �9 and one can check that the probability of  the particular 
subset C(q . . . . . .  q2, ql Iqo) is given by 

e(c )  = I<q,t, [q,-i t , - I  > . . .  <q2t2lq~ tl ) <ql tl Iqot0 >12 

in terms of  the usual matrix elements <q"t"[q't'). It is thus natural to 
assume that A(C) is the expression inside the vertical bars, i.e., to assume, 
for example, that 

A(2, 1]0) = <211 > <ll0> (3) 

where I have used obvious abbreviations for A(C(q . . . . . .  qz, qllqo)), 
<q2t2lqlq >, etc. 

If  we accept this form for A(C), additivity can first of all be applied to 
the relation 

c(210) = U c(2, 110) 
1 

to yield 

o r  

A(210) = E A(2, 110) 
1 

<210> = E <211> <110> 
1 

which is indeed true by "completeness." However, it is equally true at the 
level of  subsets that 

C(ll0) = U c(2, 110) 
2 

but this time the corresponding relation among amplitudes fails: 

E <211> <l]0> # <110> 
2 

because E 2  (2[1> # 1 in general (rather E21<211>1 z = 1 ,  as we know). 
Although the rule (2) seems to have failed, there does exist a rule 

which will reproduce the correct relative probabilities for the classes 
C(n . . . .  ,2, 110) described above. To state this rule we must first choose an 
arbitrary time T to the future of  all the times q, t 2 , . . . ,  t, (I will call T the 
"collapse time"), and compute amplitudes only for paths truncated at 
t = T, i.e., for paths y(t) defined for t~[to, T], Second, we must choose an 
arbitrary q and define instead of  (2b), 

A(q, T; CII) = Y~ A(?) (4) 
y ~ C  

y ( T )  = q 
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to be the total amplitude of all truncated paths in C that arrive at q at the 
collapse time T. Finally we put in place of (2a) 

I A(j 2 P(clI) = E [A(q, T; C[I)[~--Y~ E (5) 
q q T ~ C  

"/( T )  = q 

The resulting probabilities then agree with the standard quantum 
mechanical ones for any sequence of observations at times tl . . . . .  tn each 
of whose operators is a function of the position operator at that time. In 
particular the probabilities come out correct for the sequence of complete 
position measurements considered above. 

In comparison with (2), the rule (5) involves a somewhat unnatural 
looking combination of coherent and incoherent summation; but the main 
disappointment is that an explicit reference to time has returned in the 
form of the auxiliary parameter T which appears in (4) and (5). Moreover, 
the freedom to choose A(J  is further limited by the consistency condition 
that P(CII), which now appears to depend on T, be in fact independent of 
it. A sufficient condition for this, ifA has the form considered in (3), is that 

Z (312)*(311> = 6(2, 1) 
3 

where  t3 > t2 > tl .  It is thus natural to view the condition that T drop out 
of (5) as a generalized form of unitarity. Our general dynamical rule is then 
one which, in a certain sense, has "retreated back toward a Schrrdinger 
formulation," insofar as both time in some form and unitary evolution in 
some form figure essentially in its formulation. Nevertheless, the retreat is 
only partial, and enough of the spacetime character of (1) remains that we 
still may hope to find in the sum over histories a vehicle for formulating a 
physically consistent dynamical framework for quantum gravity. 

As adapted to gravity, the sum-over-histories method should provide, 
for appropriate classes of 4-geometries, relative probabilities computed 
according to some rule analogous to (4). To frame such a rule, we need to 
find analogs of 7, T, and q, and to choose a specific expression for A(J.  For 
the truncated path ~, the obvious analog is a compact spacetime manifold 
M, with metric g = gab and future boundary 0M. (A past boundary, if any, 
will occur only in conjunction with initial conditions. Ultimately, any 
fundamental boundary conditions must be cosmological in character; for 
example, the universe might be supposed to have originated from a 
condition of zero volume. For present purposes, let me just ignore the 
question of initial conditions, ignoring correspondingly any past boundary 
that M might possess.) For q, the analog nearest at hand is the induced 
metric on OM: q = g[OM; and for A(J  one will of course take A = Re is, 
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where S is the gravitational action (including surface terms) and R repre- 
sents the functional-integral "measure." 

There remains the "collapse time" T, whose gravitational analog is far 
from obvious. Indeed, it may even be questioned whether any analog of the 
restriction [in (4)] to paths of temporal length T should be imposed; but if 
it is not, then I believe one may expect both technical and physical 
problems with the resulting theory. Specifically, I am thinking of problems 
with the convergence of the sum analogous to (5), with the recovery in the 
"semiclassical" limit of ordinary quantum field theory on curved spacetime 
(which does involve T), and with the "causality condition" that (the 
performance of) future measurements should not affect present probabili- 
ties. Let us accept, then, that an analog of the restriction to histories of 
temporal length T is in fact needed in quantum gravity. 

What is this analog? In the remainder of this paper, I will briefly 
explore some consequences of identifying it with the condition V(g) = T, 
where V(g) is the total spacetime volume of the "history" 7, i.e., the four- 
(or whatever-) dimensional volume 

V(g) = fm ~ dx 

Apart from the fairly natural character of this proposal, it has also the 
major virtue (in my mind) of remaining meaningful when continuous 
geometries are replaced by "causal sets," which I personally would like to 
believe are the discrete substratum of spacetime. 3 For a causal set, V 
becomes simply N, the total number of elements making up the set. Thus 
our condition can be imposed on arbitrary causal sets, including ones far 
from being approximatable by any continuum geometry (M, g). For 
present purposes, however, I will remain within the continuum context, and 
not consider possible further modifications to our rules that might be 
mandated by considering (M, q) to be merely an approximation to some 
causal set or class of such sets. 

With the adoption of V(q) as the measure of "time," the formula 
analogous to (5) for the relative probability of a class C of histories 
becomes 

P(CII ) = q~ ~ '  A(7) 2 (6) 

where the "primed" inner sum is over all geometries 7 = (M, q)eC 
which obey in addition the two conditions glOM---q and V(g)'-= 
S, ~ f - ~  dx = T. 

3The notion of causal set is explained in Bombelli et al. (1987). 
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As in the nonrelativistic case, the question immediately arises whether 
the probability defined in (6) is independent of T. Unfortunately, I do not 
know the general answer to this question, which of course can only really 
acquire meaning with respect to some regularization-scheme-cum-choice- 
of-"measure" for defining the right-hand side of (6). At any rate the answer 
is "yes" in a very special case that we will examine shortly: it is not hard 
to ensure "unitarity" for the simplest minisuperspace examples, such as the 
three types of locally homogeneous and isotropic cosmology. 

Let me break off this general discussion of the "V = T" rule and turn 
to a brief consideration of some of its most striking consequences: the 
reinterpretation of the cosmological constant as a freely adjustable classical 
parameter analogous to a constant of integration; and a modified quantum 
cosmology with genuine time dependence and an unexpectedly strong 
influence of the spatial curvature on behavior near the zero-volume singu- 
larity. 

In speaking just now of the cosmological constant, I of course meant 
the observed parameter A, which is macroscopic, classical, and smaller in 
magnitude than about 10-12o in natural units. To understand the meaning 
of such a classical parameter, we should first recall how the classical limit 
in general is realized within the sum-over-histories framework, namely as a 
stationary phase approximation (h ~ 0  in A = Re is/h) that selects as the 
"classical histories" those for which 6S = 0. Now the only phases which 
matter are those that lead to interference in the inner ("coherent") sum in 
(6). But since this sum extends only over metrics of fixed volume V = T, 
the variation 6S need vanish only for variations 6g that preserve the total 
spacetime volume V. In other words, the criterion for a classical path is 

6(S - 2 V) = 0 

where 2 is a Lagrange multiplier. Inasmuch as any microscopic cosmologi- 
cal constant Ao that might be present just contributes a term -A0 V to the 
action, we see that the classical limit is governed by the effective cosmolog- 
ical constant 

A = A 0 + 2  

But since 2 is freely choosable, so also is A, and nothing in the microscopic 
theory can determine its value! 

This is an improvement over theories that almost inevitably produce 
the wrong value of A, but of course it does not yet tell us why nature uses 
this new found freedom to adjust A to a value so near zero. In fact, I 
suspect that no continuum theory can answer this question, although a 
theory based on causal sets might. Indeed there are indications that such a 
theory might predict A ~ V -1/2, which would put A just at the limit of 
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present observation, but the argument is so undeveloped (and the time 
remaining for discussion so short), that I had better not go into it here. 

Finally, let us consider the implications of the V = T rule for the 
simplest conceivable "quantum cosmologies," namely the matter-free 
"Friedmann universes" with scale factor a and compact spatial geometry 
locally isometric to one of the three homogeneous-isotropic spaces S n-  1, 
Rn- 1, H n-  1 (i.e., M = R x K, where K is a quotient of one of these three 
spaces). In this case the question of "unitarity" reduces to the question of 
whether the analog of (4), which I will call ~b(a, T), has an L2-norm which 
is independent of T (as long as T is big enough that the conditions defining 
C are to its past). Now the "path integral" in (6) implies in the usual way 
a Schr6dinger-like equation for ~b: 

where H is formally the Hamiltonian operator derived from the Lagran- 
gian, 

/& V c2 ) + -Ao 
Here I have made a change of variables from (a, T) to (v, T), where v is the 
total spatial volume "at  'time' T"; n = d + 1 is the spacetime dimension 
(assumed >2),  Ao is what I called before the "microscopic cosmological 
constant"; and the constants ci and e2 are defined as follows in terms of 
the "gravitational constant" x [normalized so that the action S = 
(1/2x) S R d V  + . . .  ] and the numerical constant k, depending only on the 
spatial topology, defined by the equality (scalar curvature of spatial metric) 
= kv - 2/d. 

Cl = X - l ( n / 2  -- 1)/(n -- 1), c2 = k /2x  

Notice that with v and T as basic variables, the "kinetic energy" term in L 
becomes that of a particle of constant (though negative) mass. 

From the expression (7) it follows first of all that, with suitable choices 
of measure p(v) dr, of "operator ordering," and of boundary conditions for 
~/, H will be self-adjoint, in which case the norm of ~/ will indeed be 
independent of T. Thus our unitarity condition can be fulfilled in this case, 
as I claimed earlier [although one might not actually want to fulfill it if the 
universe were allowed to "collapse and disappear," but then our rule (6) 
would no longer be adequate in its present form either]. 

The second interesting observation we can make apropos of (7) is that 
the sign of the "potential term" in L depends on the sign of the spatial 
curvature. For the spherical case (k positive) there is a repulsive singularity 
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at v = 0 (it looks attractive; but remember that the kinetic energy is also 
reversed in sign--a consequence of its representing a conformal degree of 
freedom), while for hyperbolic case (k negative) there is an attractive 
singularity of the same strength. This suggests that the behavior of a 
recollapsing (or even an initially expanding) universe could be very differ- 
ent in the three cases k > 0, k < 0, k = 0. (Note, however, that a change of 
operator ordering in the kinetic term of H could modify this conclusion by 
introducing terms in v-2 into the potential.) 

A third observation is that Ao functions here as an irrelevant additive 
constant in the "Hamiltonian" H. Obviously this is closely connected to 
our earlier observation that in general the cosmologically observable A is 
independent of the parameter A0 that appears in the action. 

It is also connected to the biggest conceptual change that has occurred 
here relative to versions of quantum cosmology which impose the 
Wheeler-DeWitt equation H~P = 0 on ~P. As we know, time is "frozen" in 
such treatments; but here there is genuine change with T, and ~P might, for 
example, be a wave packet rather than a "stationary state" whose temporal 
implications must be inferred indirectly via a WKB approximation, or by 
some other method. Although in the present interpretation ~P is only an 
auxiliary quantity, an aid in evaluating some e(c[o, its T dependence is 
nevertheless significant. It means, I think, that the active, dynamical aspect 
of quantum mechanics has managed to assert itself, even in a situation 
where time has been so thoroughly geometrized and "spatialized" as it is in 
general relativity. 

In concluding, I would not want to have given the impression that I 
think the sum-over-histories framework is complete in itself. Rather, I 
think the physical meaning of probabilities like e(c]I) is far from being 
settled. Specifically, what is the meaning of dividing the set of all histories 
into classes G ,  C2 . . . . .  C, and then computing a probability for each 
class? Does such a separation make sense in itself, or does it refer implicitly 
to some measuring apparatus which enforces physically the separation of 
each class Ci from the others? If the former, then how objective are the 
probabilities we compute; if the latter, then how can we do quantum 
cosmology? Such questions call for a theory of measurement, which so far 
has hardly been developed within the sum-over-histories framework. 

A circle of issues intimately related to those just raised involves the 
contrast between the intrinsically global definition of amplitudes and the 
physical locality and causality that are so characteristic of known systems. 
In operator formulations with "state vector collapse" causality and locality 
can be built in naturally (via unitary evolution and spacelike commutabil- 
ity), but in the sum-over-histories framework they arise in a less transpar- 
ent manner, a manner that I feel is not adequately understood, although it 
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is clearly tied to the specific form taken by (5) and (6). Especially in gravity, 
where the status of  causality and locality is least clear, one can hope that 
further study of  the origin and meaning of these twin properties will help 
us understand whether formulations like the one given above are adequate, 
or whether a different (possibly more radical) way of  incorporating time is 
needed. 

Added Note. My views on the sum-over-histories framework have 
evolved since this talk was delivered in 1987; see Sorkin (1991), Sorkin and 
Sinha (1991), and Sorkin (1993). Were I writing today, I would present the 
question of whether to impose V = T as basically a technical issue, without 
viewing T therein as more than a formal analog to the time-parameter which 
occurs in the Schrrdinger equation. 

Since this paper was written, several works proposing "V = T"  in a 
canonical framework have appeared (e.g., Unruh and Wald, 1989; Hen- 
neaux and Teitelboim, 1989; Brown and York, 1989). 
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